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I. INTRODUCTION

Alternative approaches to gun propellant ignition have been explored to ease auto-

matic handling and loading of large caliber ammunition. Automatic loading is facilitated

by incorporating a sliding block breech mechanism. Advantages obtained by eliminating a

separately loaded primer for the ammunition include advanced rapid fire artillery systems,

integrated system simplification, and, increased reliability and safety. A further advantage

is the lower strength requirement on the propellant case due to the absense of a percussion
pin.

This investigation addresses a low impedance inductive ignition (LI 3 ) concept design

using a simple pulsed air-core transformer to transfer energy to an electrically initiated

primer embedded in an igniter pad at the base of the propelling charge. The transformer

consists of a single turn copper primary coil in the breech face and a consumable lead

secondry in the charge as shown in Figure 1. Because of the transformer's topology,

conventional percussive primer ignition systems can still be used. Low transformer effi-

ciency coupled with high capacitive energy densities makes this an attractively insensative
ignition scheme.

F~gure 1 LI'co Cept

cuitmode. To impoepromaci a dsrbet cniqtg th ruityfo h
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€STEMrVJc

PRFC

P41"M LM raft.

-I ! 7 7 !7 II

424 VOLT 9InllMM "!" r"

Figure I. LI3 concept.

Previous work I on the L/" ignition system examined the capacitive energy store,
charging circuit, and electric primr requireets using a Jumped parameter electric cir.
cuit model. To improve pesfai'mance, it was desirable to configure .,he circuitry for the
fastest possible pube. The coupling between coils and barrel, a complex function of geoms-
etry, substantially determines trasore performance, and was modeled using a single,
average mutual inductance obtained from vwarious experimental data. This paper describes
an analysis of the magnetic fields of the pulse transformer directed towards an accurate



prediction of primary/secondary coil coupling and optimum performance.

II. ANALYTICAL MODEL

The electromagnetic field analysis of the transformer requires a mathematical deriva-
tion of the vector potential inside the combustion chamber and subsequent computation to
determine transformer geometry for optimum energy transfer to the electric primer load.
The impedance of the charging circuit is considered dominant, resulting in the primary
current pulse profile being nearly independent of the transformer geometry. The duration
of this event is on the order of tens of microseconds; consequently, the magnetic flux is
substantially excluded from the interior of the conductors. In addition, the primary coil is
taken to be filamentary, minimizing the reluctance inside the chamber.

The vector potential, A, inside the combustion chamber is the solution to Poisson's
equation in cylindrical coordinates. The magnitude of the azimuthal component is ex-
pressed as follows

&A i OA 02 A A+  (1)r Or 0:2 r 2

where A vanishes on the surface of the chamber. The permeability is p and J is the
primary coil current density. The secondary coil is a very thin foil, and its contribution to
the vector potential is considered negligible. Equation 1 is solved u'ith a Green's function,
G(r. i). constructed from the electrostatic potential of a point charge at m i. and i. inside
a ronducting cylinder comprising surfaes r = rb and : = 0 at zero potential 2

G(r,r: = i.t=E(-b) e - ~ s t - { ' f l ] J a.:J(~)x[, mOO) (2)

where J, and J,. are Bessel functions, x,. is defined by Jl(frr&) = 0. and 6, is the
Kronecker delta. The solution to the Poisson equation (1) is given by

A = ptt i G(r, i) cos(o - )a (3

where It is the primary current. Substituting the Green's function (2) into equation (3)
and performing the integration yields

A = ( \ 00l [Ji(z, )J j(r) (4)
- Phvan~ I - (- , I:I) X.[J2(xr, )]2 J

2



where , are the cylindrical coordinates of the primary coil and rb is the radius of
the combustion chamber. The current in the secondary coil, 12, may be calculated from
Faraday's law

+ 2rrJ, +1R =O (5)

where a is the conductivity of the secondary coil, J.ec is the secondary current density, and
R od is the resistance of the electric primer.

Substitution of 2-r rA = 4 and subsequent integration in terms of thickness 3, and
inner and outer radii ri and r0 of the secondary coil yields the transfer function 3

r =-- 11 - + ln(r,/ri) E re2(-zn z-!I) -e,-rn z+i)] [0J'(in )[Jo(x Tr.) - Jo(x r1 )] "

(6)

where a is the ratio 12/ii.

The transfer function equation (6) is evaluated for a 155 mm Self Propelled Howitzer
with a combustion chamber radius, rb, equal to 60.3 mm. On the basis of materials con-
siderations, performance criteria, and breech design constraints, a primary coil of 12 gage
square magnet wire is selected and mounted in a 12.7 mm recessed section. The mean
axial location of the primary coil from the breech is 11.7 mm. The secondary coil is made
from 0.1 mm thick lead (Pb) foil and its axial position from the breech is denoted by z. All
radial dimensions for the coil geometries are normalized to the combustion chamber radius.
A numerical technique was implemented to find the optimum primary coil mean radius
and the secondary coil inner and outer radii when the transfer function is maximized. The
primary/secondary coil separation distance is defined by

z, = z -. (7)

The optimum value for a at a separation distance of 2 mm is 3.480 x 10- 7 seconds.
Using the optimized coil dimensions for 200 mm of separation, and calculating a at 2 mm
gives 2.837 x 10 -' seconds, only 18.6% less. This deviation from optimum quickly falls
below 5% for z1 .2 greater than 12.7 mm and indicates the insensitivity of the transfer
function to radially varying coil dimensions. For the three coil parameters, r, ri, and
ro, the optimum coil dimension variation as a function of primary/secondary separation
is plotted in Figure 2. In addition, transformer performance degrades with increasing
primary/secondary separation distance as illustrated in Figure 3.

3
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Figure 2. Coil dimensions normalized to rb versus separation distance.
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Relaxation of design restrictions on the secondary circuit impacts system effectiveness.
Optimum values for the transfer function were calculated with z1 .2 fixed at 100 mm.
Results from varying the foil thickness and electric primer load resistance are illustrated in
Figure 4. Thicker secondary coils have reduced ohmic losses but may leave large amounts
of residue in the barrel. In all cases, lower electric primer resistance yields a larger value for
the transfer function. The optimum, normalized, primary coil radius for this variational
analysis remained constant at 0.63. However, the secondary foil width (ro - ri) decreased
with an increasing mean secondary radius for thicker foils.

700 r Foil Thickness
o 1 mil
A 2 mil

600 0 3 mil
+ 5 mil
o 8Mil

-500

.400

300

200
0.15 020 025 0 30 o35 0.40

Electric Primer Resistance, (

Figure 4. Transfer function versus electric primer resistance.

III. EXPERIMENTAL RESULTS AND DISCUSSION

The experiments wer Performed using a conventional 155 mm breech with a 12 gage
square copper coil having a mean radius of 39 mm embedded in the breech face. The
mushroom head recess diameter was 121 rm; the steel gun barrel which fit over the spindle
had an inner diameter of 142 mm. The gun brrel radius was used for r& in normalizing all
coil configuration dimensions. The power supply specifications were developed at ARDEC
and built by EML, Inc. It stares nominally 1500 Joules at 5 kV. All secondary test
coils used 0.13 mm thick copper foil with a 0.174 (1 load resistor. The resulting normalized
primary coil radius is 0.55 and the normalized secondary coil dimension domain is bounded
by 0.36 < r, < 0.76, and 0.56 < r, < 0.94. Data on each coil configuration, identified by
H, D, C, and K, are given later in Table 1.

Earlier circuit analysis had indicated that increased performance would be obtained



by minimizing the primary side inductance and resistance' The transmission line leads
from the power supply to the breech were fabricated from high voltage coax with a length of
2.7 m. A ringing pulse discharge with the primary coil connected yielded 2.514H and 28.6mf2
for the primary side, circuit parameters. During each test, initial charge voltage, primary
current, and secondary load voltage were recorded. The current was measured using a

current transformer while the secondary voltage was measured directly with a voltage

divider. Figure 5 shows a typical trace obtained for the measured primary current and

secondary load voltage at an initial charge voltage of 1 kV. Also shown is the primary di/dt,

obtained by differentiating the primary current. Differentiation is done via a numerical

technique which uses a five point smoothing algorithm. During all tests the primary to

secondary distance remained constant at 44.13 mm.

Twenty four tests were performed with each of the four coil configurations pulsed

twice at initial charge voltages of 1, 3, and 5 kV. For each test a could be found as a

function of time from

0(t)- I(t) V2(t)/O.174f (8)
I,(t) t - (8)

Typical waveforms obtained using equation (8) are shown in Figure 6 for the four coil
configurations at an initial charge voltage of 3 kV. For times greater than 7/us there is very
little deviation amongst the four coils. Beyond 16ps the value of I2/i, becomes untenably
large as il approaches zero.

For all coil configurations, the transfer function data are only significantly different
for times less than 5 psec. The time averaged values of a, integrated over the interval
.5 usec to 22 usec, for all coil configurations is 51.44 x 10- 9 seconds with a deviation of
only 2.8%. Since the mathematical model is applicable only when the vector potential on
the inner barrel wall surface is zero, the data should be evaluated for short times. A time
of 3 psec was selected to analyze I2/il. The deviation of the transfer function among the
four coil configurations evaluated at this time is 16.8%. Table 1 lists a for the four coil
configurations tested in order of decreasing I1/Il. Also, results from the theoretical model
are shown to be in reasonable agreement with the experimental data.

Table 1. Coil Configuration Summary

Coil ri r, 121h, 10- ' seconds
Configuration Data 0 3ps Calculated
H .36 .56 30.71 : 3.0% 28
D .51 .87 27.37 ± 9.3% 32
C .60 .78 24.86 ± 6.4% 34
K .76 .94 20.38 ± 10.4% 21

The weak dependence of a on secondary radial coil dimensions for the domain ri < 0.6,

and ro > 0.6, is illustrated for the laboratory setup (i = 0.55) in Figure 7. The optimum

6
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Figure 6. Transfer functions for coils H, D, C, and K.

normalized secondary coil dimensions are r, = 0.56 and r, = 0.69. The corresponding
calculated transfer function is 35 x 10- seconds; this is a 14 % increase over the largest
measured, and is near the uncertainty in the experimental data.

The value of 12/1 varied as much as 10.4% as the capacitor bank voltage was in-
creased. Nonlinear effects arising from the presence of the steel barrel containment become
apparent when considering the energy transferred to the secondary load. Therefore, the
efficiency, 77, defined as the ratio of the secondary load energy to the stored capacitive
energy, is given as

f a2)!dt
Sf Rtoa: (9)

E7-- stored

For all test voltages configuration C was found to transfer energy most efficiently while coil
configuration H was found least efficient. Efficiency was found to decrease as the capacitor
voltage was increased. The variation of magnetic permeability with magnetic flux density
at the surrounding barrel wall alters the induced ohmic losses. The effect is illustrated in
Figure 8. As would be expected, relatively more energy was transferred to the 0.174 Q
load at the higher voltages.

8
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IV. CONCLUSIONS

Corresponding to the optimum performance configuration, the primary coil mean
radius and the secondary coil inner and outer radii attain nearly constant values with
increasing primary/secondary coil separation distance. The transfer function was found
to be relatively insensitive to small changes in coil radial dimensions near optimum. The
theoretical model assumed simple dimensional boundaries while the experiment used ac-
tual gun barrel hardware which produced small dimensional deviations from the assumed
model. These too were found to offer undiscernible differences between tranfer function
calculations and experimental data. Pulse times greater than 7ps produced little variation
in the transfer function among the tested coil configurations. Limiting the diffusion of the
magnetic flux in the surrounding barrel steel with a fast discharge pulse should lead to
the conditions assumed in the transformer model and optimum transformer performance.
Inclusion of the permeable, surrounding barrel material in the analysis will require further
work. Additional experimental work is needed in order to verify the theoretical model pre-
sented. Better selection of coil configurations is needed to explore the theoretical model
in the domains r, > 0.4, ro < 0.6 and r, > 0.6, ro > 0.9. where the change in a is most
sensitive to the change in coil dimensions.

These results are intended to support a refined system design for further experimental
verification of the low impedance inductive ignition concept.

10
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